Effect of interfacial species mixing on phonon transport in semiconductor superlattices

نویسندگان

  • E. S. Landry
  • A. J. H. McGaughey
چکیده

Molecular dynamics simulations are used to examine the effect of interfacial species mixing on the thermal conductivity of Stillinger-Weber Si /Si0.7Ge0.3 and Si/Ge superlattices at a temperature of 500 K. The thermal conductivity of Si /Si0.7Ge0.3 superlattices is predicted to not depend on the interfacial species mixing and to increase with increasing period length. This period length dependence is indicative of incoherent phonon transport and related to decreasing interface density. The thermal conductivity of Si/Ge superlattices is predicted to depend strongly on the interface quality. For Si/Ge superlattices with perfect interfaces, the predicted thermal conductivity decreases with increasing period length before reaching a constant value, a trend indicative of coherent phonon transport. When interfacial species mixing is added to the model, however, the thermal conductivity is predicted to increase with increasing period length, indicating incoherent phonon transport. These results suggest that the assumption of coherent phonon transport made in lattice dynamics–based models may not be justified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of superlattice phonons by interfacial mixing

Molecular dynamics simulations and lattice dynamics calculations are used to study the vibrational modes and thermal transport in Lennard-Jones superlattices with perfect and mixed interfaces. The secondary periodicity of the superlattices leads to a vibrational spectrum (i.e., dispersion relation) that is distinct from the bulk spectra of the constituent materials. The mode eigenvectors of the...

متن کامل

Thermal conductivity of Si1−xGex/Si1− yGe y superlattices: Competition between interfacial and internal scattering

We investigate thermal transport in Si/Ge and Si1−xGex /Si1−yGey alloy superlattices based on solving the single-mode phonon Boltzmann transport equation in the relaxation-time approximation and with full phonon dispersions. We derive an effective interface scattering rate that depends both on the interface roughness (captured by a wave-vector-dependent specularity parameter) and on the efficie...

متن کامل

Interfacial charge effects on electron transport in III-Nitride metal insulator semiconductor transistors

We report on the calculation of the two dimension electron gas (2DEG) mobility in scaled AlGaN/ GaN metal-insulator-semiconductor high-electron-mobility-transistors. We investigate the effect of remote impurity and phonon scattering models on the 2DEG mobility of the dielectric/AlGaN/GaN structure and investigate its variation with dielectric/AlGaN interface charge density, 2DEG concentration, ...

متن کامل

Raman Scattering from Semiconductor Nanoparticles and Superlattices

The effect of reduced dimensionality on the shape and position of the first order phonon bands in the Raman scattering spectrum of semiconductors is described. Off-resonance and resonance Raman scattering from semiconductor nanoparticles and superlattices are then considered. Results on nanocrystal size determination, lattice ordering and crystallization of amorphous ultra-thin films, interface...

متن کامل

Electron transport in quantum wire superlattices

Electronic transport is theoretically investigated in laterally confined semiconductor superlattices using the formalism of nonequilibrium Green’s functions. Velocity-field characteristics are calculated for nanowire superlattices of varying diameters, from the quantum dot superlattice regime to the quantum well superlattice regime. Scattering processes due to electron-phonon couplings, phonon ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009